4.7 Article

Modelling of PFAS-surface interactions: Effect of surface charge and solution ions

期刊

CHEMOSPHERE
卷 319, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2023.137910

关键词

PFAS; Molecular simulation; Surface interactions; Intermolecular forces

向作者/读者索取更多资源

Per- and poly-fluoroalkyl substances (PFAS) are of increasing concern as environmental contaminants. The interactions between PFAS and surfaces are important for PFAS transport and remediation. Monte Carlo molecular simulations were used to examine PFAS-surface interactions, showing differences resulting from changes in surface charge, H+, OH-, Ca2+ concentrations, and PFAS carbon chain length. The simulations can aid in the design and testing of sorptive surfaces for PFAS remediation.
Per-: and poly-fluoroalkyl substances (PFAS) are a class of substances of increasing concern as environmental contaminants. The interactions between PFAS and surfaces play an important role in PFAS transport and remediation. Previous studies have found PFAS adsorption to be dependent upon properties including pH, organic matter and particle size, along with PFAS functional group and carbon chain length. It is hypothesised that a theoretical examination of PFAS-surface interactions, via Monte Carlo molecular simulation, would show differences resulting from changes in surface charge, H+, OH-, Ca2+ concentrations and PFAS carbon chain length. Monte Carlo molecular simulations of perfluorooctane and perfluorobutane sulfonic acids interacting with a graphite surface in an aqueous medium were performed. Variations in surface charge, H+, OH- and Ca2+ concentrations were made. The distance-dependent density of molecules from the surface was analysed as a proxy for PFAS adsorption to the surface. Simulation results showed differences in surface behaviour that depended on surface charge, H+, OH- and Ca2+ concentrations, along with carbon chain length, with surface charge playing the most prominent role in controlling PFAS adsorption. For negatively charged surfaces, adsorption due to divalent cation bridging was observed in Ca2+ solutions. Modelling, such as in this study, of the thermodynamic equilibrium behaviour of low concentrations of molecules, in scenarios where both adsorption and mobility of PFAS occur, can aid in the design and testing of sorptive surfaces for amendment-based PFAS remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据