4.6 Article

Template-assisted Fabrication of O-doped CoP Microflowers with Optimal Electronic Modulation for Electrochemical Hydrogen Evolution

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202301252

关键词

electronic modulation; hydrogen evolution reaction; O-CoP microflowers; O incorporation

向作者/读者索取更多资源

This study proposes a reliable self-sacrificial template-engaged approach to synthesize O-doped CoP microflowers with enhanced catalytic performance. The optimized O-CoP microflowers show remarkable HER property with small overpotential, low Tafel slope, and long-term durability under alkaline electrolyte. This work provides valuable insights for the design of low-cost and effective electrocatalysts in energy conversion and storage systems.
Exploring efficient, affordable and stable electrocatalyst toward hydrogen evolution reaction (HER) is of great scientific significance for the practical implementation of the water splitting. The heteroatom doping represents a serviceable strategy to further elevate the catalytic performance for a transition metal-based electrocatalyst because of the electronic regulation effect. Herein, a reliable self-sacrificial template-engaged approach is proposed to synthesize O-doped CoP (denoted as O-CoP) microflowers, which simultaneously considers the regualtion of electronic configuration via anion doping and sufficient exposure of active sites via nanostructure engineering. The suitable O incorporation content in CoP matrix could tremendously modify the electronic configuration, accelerate the charge transfer, promote the exposure of active sites, strengthen the electrical conductivity, and adjust the adsorption state of H*. Consequently, the optimized O-CoP microflowers with optimal O concentration display a remarkable HER property with a small overpotential of 125 mV to afford a current density of 10 mA cm(-2), a low Tafel slope of 68 mV dec(-1) and long-term durability for 32 h under alkaline electrolyte, manifesting a considerable potential application for hydrogen production at large scale. The integration of anion incorporation and architecture engineering in this work will bring in a depth insight for the design of low-cost and effective electrocatalysts in energy conversion and storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据