4.8 Article

Metal-Organic Dimerization of Dissymmetrical Ligands toward Customized Through-Space Chromophore Interactions

期刊

CHEMISTRY OF MATERIALS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.2c03668

关键词

-

向作者/读者索取更多资源

The pursuit of good photophysical properties in organic optoelectronic materials necessitates an understanding and control of chromophore interactions, particularly in their aggregating form. This study presents a customizable molecular design using dissymmetrical ligands to precisely control chromophore interactions through the formation of metal-organic dimers. Anti-paralleled stacking of dissymmetrical ligands in these dimers allows for lateral shifting of chromophore stacking, with the spacing determined and adjusted by ligand dissymmetry. Three metal-organic dimers with varying chromophore spacing exhibited unique photophysical properties and displayed high-efficiency luminescence against quenching. This strategy offers a universally applicable approach to construct chromophore dimers with fixed cofacial spacing and determinate through-space interactions.
The pursue of good photophysical properties for organic optoelectronic materials requires a well understanding of through-space chromophore interactions, which further requires a well control over the spatial arrangement of chromophores. However, it remains a challenge to precisely customize the positioning of chromophores in their aggregating form such as in a simplest cofacially stacked dimer. Herein, this work provides a customizable molecular design based on dissymmetrical ligands that can enable a precise control over chromophore interactions through the formation of metal-organic dimers. Anti-paralleled stacking of two dissymmetrical ligands in the metal-organic dimers results in a lateral shifting of chromophore stacking, whose spacing is determined and adjusted by the degree of ligand dissymmetry. Three metal-organic dimers with a variation in chromophore spacing exhibited unique photophysical properties in both solution and solid states and displayed high-efficient luminescence against quenching in their aggregating states. This strategy thereby offers a universally applicable way to construct chromophore dimers with fixed cofacial spacing and determinate through-space interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据