4.7 Article

Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas

期刊

CHEMICAL ENGINEERING JOURNAL
卷 462, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.142217

关键词

Microwave plasma; Gas quenching; Computational fluid dynamics

向作者/读者索取更多资源

Plasma technology is a promising method for converting CO2 into value-added products. In this study, the effect of different quenching nozzles on cooling the gas and suppressing the recombination of CO back into CO2 was investigated computationally. The results showed that attaching a nozzle in the effluent of the reactor significantly improved gas quenching and reduced CO recombination reactions, especially at low flow rates.
Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K) allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow. In this work, we computationally investigated several quenching nozzles, developed and experimentally tested by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more impact at low flow rates, where recombination is the most limiting factor in the conversion process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据