4.7 Article

Laser etching ultra-black coating with novel anti-icing performance

期刊

CHEMICAL ENGINEERING JOURNAL
卷 466, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.143067

关键词

Ultra-black coating; Laser etching technology; Anti-icing; Solar energy; Photothermal materials

向作者/读者索取更多资源

This study presents a new method for preparing ultra-black coatings using a resin-matrix composite filled with carbon nanotubes. The coatings demonstrated high light absorbance and excellent anti-icing and anti-frosting performance, making them suitable for aerospace, optical instrument, and solar applications.
Ultra-black coating has more than 99 % absorbance and is widely applied in aerospace, optical instruments, and solar industries. However, preparing the presently available ultra-black coatings requires high temperatures, significantly limiting their application. Based on a resin-matrix composite coating filled with carbon nanotubes (CNTs), this study provides a new method for preparing resin-matrix ultra-black coatings using laser etching technology at room temperature. The obtained results indicated that the laser etching process could effectively remove the pure resin film coated on the coating surface and change the light contact interface from air/resin to air/CNTs. The highest average absorption achieved by the coating was 99.49 %. The morphological character-istics prove that the laser etching changed the coating surface from a smooth resin to a porous microstructure. The porous microstructure played a significant role in light absorption and remarkably improved surface roughness and hydrophobicity. In addition, the excellent light absorption performance significantly improved the photothermal conversion, which translated to enhanced anti-icing and anti-frosting performance over an aluminum substrate. Under 1 sun illumination at-10 degrees C, the frozen time of water drop on the coating surface was 692 s, 11.2 times longer than that on an aluminum substrate surface. No frosting was observed on the coating surface after 600 s of testing. Furthermore, the coating also showed remarkable anti-icing and anti -frosting performance at-20 degrees C. Hence, the reported ultra-black layer demonstrated room-temperature syn-thesis and extremely high light absorbance, making it a promising candidate for various cold-weather applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据