4.7 Article

Construction of a BaTiO3/tubular g-C3N4 dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline

期刊

CHEMICAL ENGINEERING JOURNAL
卷 461, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.141947

关键词

BaTiO3; Photocatalysis; Dual piezoelectric effect; Efficient carrier separation

向作者/读者索取更多资源

One-dimensional tubular g-C3N4 (TCN) with piezoelectric properties was prepared by self-assembly and hydrothermal method, and BaTiO3/TCN composite with excellent dual piezoelectric properties was constructed by further hydrothermal reaction. The TCN exhibited a higher piezoelectric degradation rate of tetracycline hydrochloride (TCH) under ultrasonic vibration compared to CN. The BaTiO3/TCN composite showed excellent piezoelectric photocatalytic activity with higher TCH degradation rate under visible light (VSL) illumination and ultrasonic vibration, demonstrating the synergic catalytic effect of dual piezoelectric.
One-dimensional tubular g-C3N4 (TCN) with piezoelectric properties was prepared by self-assembly and hy-drothermal method, and BaTiO3/TCN composite with excellent dual piezoelectric properties was constructed by further hydrothermal reaction. The piezoelectric degradation rate of tetracycline hydrochloride (TCH) by TCN (18.2 %) within 60 min under ultrasonic vibration was about 2.8 times higher than that by bulk g-C3N4 (CN) (6.6 %). Furthermore, the BaTiO3/TCN composite, a dual piezoelectric photocatalyst, exhibited excellent piezo-electric photocatalytic activity with TCH degradation rate of 91.0 % within 60 min under visible light (VSL) illumination and ultrasonic vibration, which was higher than that of ultrasonic vibration (27.8 %) and VSL illumination (81.8 %). The polarization electric fields were formed in both TCN and BaTiO3 under ultrasonic vibration, which could maintain the built-in electric field strength between the heterojunction interfaces, accelerate the photogenerated carrier migration, and thus improve the separation efficiency to achieve the synergic catalytic effect of dual piezoelectric under VSL irradiation. This work demonstrated that TCN had better piezoelectric photocatalytic properties than CN, and the efficient pollutant removal performance of dual piezoelectric photocatalysis, which provided new ideas for the development of piezoelectric photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据