4.7 Article

Steam reforming of methanol over combustion synthesized CuZnOx-based catalysts for fuel cell applications

期刊

CHEMICAL ENGINEERING JOURNAL
卷 461, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.142098

关键词

Hydrogen; Methanol reforming; CuZn catalysts; Promoters; Fuel cell

向作者/读者索取更多资源

Steam reforming of methanol using CuZnOx catalysts was investigated, and the incorporation of Ga was found to improve catalyst performance by altering the environment and promoting the formation of ZnGa2O4 spinels and oxygen vacancies. The presence of Ga2O3 (15 wt%) was beneficial for activity and selectivity, and the formation of a CuZnGaAlOx system further enhanced the performance. The most active material showed promising results in an integrated internal reforming methanol fuel cell operating at 220 degrees C.
Steam reforming of methanol is considered an effective way of producing hydrogen-rich reformate for fuel cell applications, with the CuZnOx catalysts to be the most widely used materials for this process. In this study, the incorporation of various promoters in the CuZnOx structure, via a solution-combustion method, was investigated in order to promote the performance of the catalysts in the steam reforming of methanol. The physicochemical results indicated that the Ga promotion can alter the environment of ZnO phase, creating ZnGa2O4 spinels, oxygen vacancies and thus, influencing the interaction with the active phase (strong metal-support interactions). The catalytic studies illustrated that an optimum amount in Ga2O3 (15 wt%) is beneficial in terms of activity and especially, selectivity, while the formation of a CuZnGaAlOxsystem enhances further the performance. The functionality of the most active material was successfully demonstrated in an integrated internal reforming methanol fuel cell operating at 220 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据