4.7 Article

Multiple in-situ reactions induced by biodegradable iodides: A synergistically chemodynamic-photothermal therapy platform

期刊

CHEMICAL ENGINEERING JOURNAL
卷 465, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.142699

关键词

Cuprous iodide -palladium iodide; Nanoenzymes; Chemodynamic and photothermal therapy; Biodegradation; IR; CT imaging

向作者/读者索取更多资源

Cuprous iodide-palladium iodides (CPIs) nanoenzymes were designed for imaging-guided synergistic chemodynamic-photothermal therapy. CPIs can generate hydroxyl radicals from endogenous H2O2 and reduce glutathione in the tumor microenvironment, enhancing the therapeutic effect. Additionally, CPIs have high photothermal conversion efficiency and X-ray attenuation coefficient, enabling imaging-guided treatment. Moreover, CPIs can be degraded to avoid long-term toxicity.
Integrating multifunctional nanostructures and effectively modulating the tumor microenvironment (TME) is a need for precision nanotherapy. In this work, cuprous iodide-palladium iodides (CPIs) nanoenzymes were designed for infrared thermal (IR) and computed tomography (CT) imaging-guided synergistic chemodynamicphotothermal therapy (CDT and PTT) of tumor. CPIs act as peroxidase (POD)-like enzymes to catalyze the generation of hydroxyl radicals (center dot OH) from endogenous H2O2, and also reduce the excess glutathione (GSH) in the TME to relieve tumor antioxidant ability, which enhance the effect of CDT. More importantly, due to the promoted non-radiative recombination of carries, the CPIs shift the light absorption range to the near-infrared region and confer higher photothermal conversion efficiency (47.72%), which improves the photothermal therapeutic effect and accelerate the generation rate of center dot OH. Furthermore, the CT images exhibited by CPIs can help guide synergistic CDT/PTT treatment due to the high X-ray attenuation coefficient of the I-element. Finally, based on the dual oxidation of Cu(I) and I(I), the CPIs can be degraded to avoid long-term toxicity after inhibiting tumor growth. All in all, this nanotherapeutic platform constructed by iodides provide a possibility to simultaneously meet the biodegradability and imaging-guided synergistic chemodynamic-photothermal therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据