4.7 Article

Construction of a 0D/3D AgI/MOF-808 photocatalyst with a one-photon excitation pathway for enhancing the degradation of tetracycline hydrochloride: Mechanism, degradation pathway and DFT calculations

期刊

CHEMICAL ENGINEERING JOURNAL
卷 460, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.141842

关键词

0D; 3D AgI; MOF-808; Photocatalytic; One-photon excitation; Condensed FuKui function

向作者/读者索取更多资源

The synthesis of a unique 0D/3D AgI/MOF-808 composite showed that one-photon excitation pathway improved photon utilization effectiveness. The composite exhibited excellent adsorption and photocatalytic properties for tetracycline hydrochloride degradation.
One-photon excitation has been demonstrated to be ideal for improving photon utilization effectiveness. We synthesized a unique 0D/3D AgI/MOF-808 composite using a hydrothermal method combined with in situ precipitation. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations indicated the electron migration direction, confirming the presence of a one-photon excitation pathway. The 0D/3D AgI/ MOF-808 exhibited both excellent adsorption (189.01 mg/g) and photocatalytic properties for tetracycline hy-drochloride (TCH). Electrochemical and photoluminescence (PL) tests showed that 0D/3D AgI (40 wt%)/MOF-808 had the highest photogenerated carrier transport and separation efficiency, with a TCH degradation effi-ciency of 83.02 % and a degradation rate 14.32 times higher than that of bare AgI. Photon utilization efficiency, carrier separation, and adsorption capacity expansion all contributed to the photocatalytic performance. The effects of pH and inorganic anions on the composite photocatalyst during the photocatalytic reaction were also investigated. The capture experiment demonstrated that .OH and .O2- were the primary active groups. Addi-tionally, the stability was enhanced because the migration of electrons in AgI effectively limited the reduction of Ag+ to Ag0. Possible attack sites during TCH degradation were predicted using the condensed FuKui function (CFF), and potential degradation pathways were determined using ultrahigh-performance liquid chromatogra-phy-tandem mass spectrometry (UHPLC-MS/MS). The examination of the biotoxicity of TCH degradation in-termediates demonstrated a reduction in their environmental risks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据