4.7 Article

Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic

期刊

CHAOS SOLITONS & FRACTALS
卷 169, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2023.113294

关键词

Epidemic spreading; Vaccination behavior; Compartment model; Evolutionary game theory; COVID-19

向作者/读者索取更多资源

In this study, a coupled disease-vaccination behavior dynamic model is introduced to investigate the coevolution of individual vaccination strategies and infection spreading. The study finds that sharing information about the consequences of infection and vaccination with the entire population is beneficial in reducing the final epidemic size.
Predicting the evolutionary dynamics of the COVID-19 pandemic is a complex challenge. The complexity increases when the vaccination process dynamic is also considered. In addition, when applying a voluntary vaccination policy, the simultaneous behavioral evolution of individuals who decide whether and when to vaccinate must be included. In this paper, a coupled disease-vaccination behavior dynamic model is introduced to study the coevolution of individual vaccination strategies and infection spreading. We study disease transmission by a mean-field compartment model and introduce a non-linear infection rate that takes into account the simultaneity of interactions. Besides, the evolutionary game theory is used to investigate the contemporary evolution of vaccination strategies. Our findings suggest that sharing information with the entire population about the negative and positive consequences of infection and vaccination is beneficial as it boosts behaviors that can reduce the final epidemic size. Finally, we validate our transmission mechanism on real data from the COVID-19 pandemic in France.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据