4.7 Article

Hydration kinetics and strength retrogression mechanism of silica-cement systems in the temperature range of 110?C-200?C

期刊

CEMENT AND CONCRETE RESEARCH
卷 167, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2023.107120

关键词

High temperature; Silica -cement system; Heat of hydration; Chemical shrinkage; Strength retrogression

向作者/读者索取更多资源

A comprehensive study was conducted on the hydration kinetics and engineering properties of silica-cement under varying temperature and pressure conditions. The results showed that the effect of curing temperature on hydration kinetics is complex, while pressure has a more significant influence. The heat of hydration was found to be proportional to chemical shrinkage and independent of curing temperature. The retrogression of strength in silica-cement systems is attributed to the transformation of C-S-H to xonotlite and tobermorite, accompanied by volume expansion. Increasing pressure accelerates volume expansion and phase transformation, while increasing silica dosage slows down these processes.
A comprehensive investigation of silica-cement hydration kinetics and engineering properties in the temperature range from 110 degrees C to 200 degrees C and pressure range from 25 MPa to 50 MPa were conducted by isothermal calo-rimetry, chemical shrinkage, and ultrasonic cement analyzer. Test results revealed that the effect of curing temperature on the hydration kinetic profiles is very complex, while the influence of pressure is relatively evident. The heat of hydration of the silica-cement system is approximately proportional to chemical shrinkage and the proportionality constant is invariant with curing temperature. Strength retrogression of silica-cement systems is caused by the transformation of amorphous C-S-H to xonotlite and tobermorite and is accompanied by volume expansion possibly due to the conversion of chemically bound water to free water. Increasing curing pressure can accelerate the volume expansion and phase transformation process during early age, while increasing silica dosage can significantly slow down such process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据