4.7 Article

Using Fibre recovered from face mask waste to improve printability in 3D concrete printing

期刊

CEMENT & CONCRETE COMPOSITES
卷 139, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2023.105047

关键词

3D concrete printing; COVID-19; Face masks; Polypropylene fibres; Flexural strength; Rheology; Interlayer bond strength

向作者/读者索取更多资源

Surgical face mask usage has increased due to the COVID-19 pandemic, leading to excessive plastic waste. This study explores the use of recycled face mask fibre in 3D concrete printing to improve printability and reduce landfill waste. The addition of face mask fibre improved rheological properties and strength, with significant increases in compressive and flexural strength.
Surgical face mask usage has rapidly increased in the last two years due to the COVID-19 pandemic. This gen-erates vast amounts of plastic waste, causing significant risks to the ecosystem. Thus, this study assesses the potential of using recycled fibre from face mask waste as fibre reinforcement in 3D concrete printing (3DCP) applications to improve printability while reducing landfill waste. The effect of recycled fibre from waste face masks on the rheological characteristics of printable mixes and the mechanical performance of printed elements was evaluated for different contents of shredded face masks (i.e., 1% and 2% by vol). The rheological properties like static and dynamic yield strengths, apparent viscosity, and thixotropic behaviour, along with compressive and flexural strength, were evaluated for 3D printed specimens and mechanical properties were compared to their mould-cast counterparts. Further, the variation in the interlayer bond strength and porosity due to different fibre dosages was also investigated. In addition, a comparative study on the fresh and hardened properties was performed for the printable mixes with polypropylene (PP) fibres and face masks. The addition of face masks significantly improved the rheological properties with good extrudability and buildability for all the dosages. Compared to face masks, mixes with PP fibres showed poor extrudability with higher fibre dosages. The compressive strength was increased by 41% for a 1% dosage of face masks when compared to the unreinforced concrete. Furthermore, the flexural strength when tested along the weaker interface, showed an increase of 74% and 82% for the addition of 1% and 2% face mask content. The interlayer bond strength of 1% face mask content showed 21% improvement and was observed to have the highest surface moisture content. The mechanical performance of face masks and PP fibres are observed to be comparable for 1% dosage. The mechanical prop-erties of printed and mould-cast specimens were also observed to be similar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据