4.0 Article

Reinterpretation of a major terrane boundary in the northern Svalbard Caledonides based on metamorphic fingerprinting of rocks in northern Spitsbergen

期刊

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/cjes-2022-0002

关键词

Mosselhalv?ya Group; Atomfjella Complex; West Ny-Friesland terrane; Nordaustlandet terrane; thermodynamic phase equilibrium modelling; monazite

向作者/读者索取更多资源

New analytical data and petrographic observations show that both the Mosselhalvoya Group and the Atomfjella Complex experienced two-stage metamorphism under similar pressure-temperature (P-T) conditions. This suggests that the boundary between them is more likely a subordinate thrust fault within the Atomfjella thrust stack, rather than a major boundary separating the Nordaustlandet and West Ny-Friesland terranes.
Tectonic models for development of the Svalbard Caledonides depend on reliable assessment of the metamorphic evolution of the various basement provinces involved. The Mosselhalvoya Group (MG) and the Atomfjella Complex (AC) have previously been assigned to the Nordaustlandet and West Ny-Friesland terranes, respectively. New analytical data and petrographic observations indicate that both units experienced two-stage metamorphism under similar pressure-temperature (P-T) conditions. Two stages of amphibolite facies metamorphism (M1 and M2) are clearly recorded by garnet and staurolite porphyroblast textures. The results of thermodynamic phase equilibrium modeling indicate that peak M2 metamorphism occurred at similar to 7-7.5 kbar and 590-600 degrees C in both units. Zirconium-in-rutile trace element thermometry confirms the temperature estimates for M1 and M2 stages of metamorphism. Monazite chemical Th-U-Pb dates from the MG resolve a two-stage garnet growth at 444 +/- 7 Ma (M1) and 423 +/- 6 Ma (M2). In contrast, monazite dated in the AC defines a single age of 420 +/- 4 Ma interpreted as M2 growth. We suggest M2 was coeval with early strike-slip motion along the Billefjorden Fault Zone, whereas M1 reflects initial tectonic burial of the studied units. The similarity in metamorphic history between the both units suggests that the boundary between them is a subordinate thrust fault within the Atomfjella thrust stack rather than a major boundary separating the Nordaustlandet and West Ny-Friesland terranes. The MG should be included within the West Ny-Friesland terrane and the tectonic boundary with the Nordaustlandet terrane is likely the Eolussletta Shear Zone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据