4.7 Article

Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization

期刊

BRAIN
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awad191

关键词

CCL2; CCR2; migraine; headache; peripheral sensitization; neuroimmune interaction

向作者/读者索取更多资源

Migraine, especially chronic migraine, lacks effective treatment. This study suggests that the chemokine CCL2 and its receptor CCR2 play a crucial role in the development of chronic pain in migraine. Inhibiting the CCL2-CCR2 pathway can alleviate chronic headache-related behaviors.
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone. Ryu et al. study neuroimmune interactions in chronic headache and show that signalling of chemokine CCL2 through its receptor CCR2 in peripheral tissues contributes to chronic headache-related sensitization in a mouse model of migraine. Inhibition of CCL2 or CCR2 could be a potential treatment for chronic headache.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据