4.2 Article

EDDSN-MRT: multiple rodent tracking based on ear detection and dual siamese network for rodent social behavior analysis

期刊

BMC NEUROSCIENCE
卷 24, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12868-023-00787-3

关键词

Multiple rodent tracking; Object detection; Dual siamese network; Deep learning; EDDSN-MRT

向作者/读者索取更多资源

This study developed a multi-rodent tracking system (EDDSN-MRT) to investigate the relationship between neural systems and social behaviors. The EDDSN-MRT system can track the locomotion and social behavior of multiple mice simultaneously and provides better tracking performance compared to other methods.
Background Rodent social behavior is a commonly used preclinical model to interrogate the mechanisms underpinning various human neurological conditions. To investigate the interplay between neural systems and social behaviors, neuroscientists need a precise quantitative measure for multi-rodent tracking and behavior assessment in laboratory settings. However, identifying individual differences across multiple rodents due to visual occlusion precludes the generation of stable individual tracks across time.Methods To overcome the present limitations of multi-rodent tracking, we have developed an Ear Detection and Dual Siamese Network for Multiple Rodent Tracking (EDDSN-MRT). The aim of this study is to validate the EDDSNMRT system in mice using a publicly available dataset and compare it with several current state-of-the-art methods for behavioral assessment. To demonstrate its application and effectiveness in the assessment of multi-rodent social behavior, we implemented an intermittent fasting intervention experiment on 4 groups of mice (each group is with different ages and fasting status and contains 8 individuals). We used the EDDSN-MRT system to track multiple mice simultaneously and for the identification and analysis of individual differences in rodent social behavior and compared our proposed method with Toxtrac and idtracker.ai.Results The locomotion behavior of up to 4 mice can be tracked simultaneously using the EDDSN-MRT system. Unexpectedly, we found intermittent fasting led to a decrease in the spatial distribution of the mice, contrasting with previous findings. Furthermore, we show that the EDDSN-MRT system can be used to analyze the social behavior of multiple mice of different ages and fasting status and provide data on locomotion behavior across multiple mice simultaneously.Conclusions Compared with several state-of-the-art methods, the EDDSN-MRT system provided better tracking performance according to Multiple Object Tracking Accuracy (MOTA) and ID Correct Rate (ICR). External experimental validation suggests that the EDDSN-MRT system has sensitivity to distinguish the behaviors of mice on different intermittent fasting regimens. The EDDSN-MRT system code is freely available here: https://github.com/fliessen/ EDDSN-MRT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据