4.7 Article

Genome-wide identification and expression analysis of the cyclic nucleotide-gated ion channel (CNGC) gene family in Saccharum spontaneum

期刊

BMC GENOMICS
卷 24, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-023-09307-3

关键词

CNGC; Saccharum spontaneum; Development; Circadian rhythm; Low-K+ stress

向作者/读者索取更多资源

In this study, 16 CNGC genes and their alleles were identified and classified from Saccharum spontaneum. Gene duplication and syntenic relationships analysis showed that the CNGC gene family in S. spontaneum expanded mainly through segmental duplication events. Most of the SsCNGCs showed differential expression during development and in different tissues, with a diurnal rhythm. SsCNGC13 gene might be involved in both sugarcane development and its response to low-K+ stress.
BackgroundCyclic nucleotide-gated ion channels (CNGCs) are nonselective cation channels that are ubiquitous in eukaryotic organisms. As Ca2+ channels, some CNGCs have also proven to be K+-permeable and involved in plant development and responses to environmental stimuli. Sugarcane is an important sugar and energy crop worldwide. However, reports on CNGC genes in sugarcane are limited.ResultsIn this study, 16 CNGC genes and their alleles were identified from Saccharum spontaneum and classified into 5 groups based on phylogenetic analysis. Investigation of gene duplication and syntenic relationships between S. spontaneum and both rice and Arabidopsis demonstrated that the CNGC gene family in S. spontaneum expanded primarily by segmental duplication events. Many SsCNGCs showed variable expression during growth and development as well as in tissues, suggesting functional divergence. Light-responsive cis-acting elements were discovered in the promoters of all the identified SsCNGCs, and the expression of most of the SsCNGCs showed a diurnal rhythm. In sugarcane, the expression of some SsCNGCs was regulated by low-K+ treatment. Notably, SsCNGC13 may be involved in both sugarcane development and its response to environmental stimuli, including response to low-K+ stress.ConclusionThis study identified the CNGC genes in S. spontaneum and provided insights into the transcriptional regulation of these SsCNGCs during development, circadian rhythm and under low-K+ stress. These findings lay a theoretical foundation for future investigations of the CNGC gene family in sugarcane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据