4.7 Article

Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress

期刊

BMC GENOMICS
卷 24, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-023-09262-z

关键词

Rice (Oryza sativa L; ); Anaerobic germination (AG) stress; Cold stress during germination; Combined stress; RNA-seq; Differentially expressed genes (DEGs); Hub genes

向作者/读者索取更多资源

In this study, a comparative gene expression analysis was conducted on two rice genotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. A large number of differentially expressed genes were identified, which can be used to screen promising candidate genes for rice crops that are more tolerant to flooding and cold stress.
BackgroundRice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination.ResultsThe differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein).ConclusionA large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据