4.7 Article

Characterization and phylogenetic analyses of ten complete plastomes of Spiraea species

期刊

BMC GENOMICS
卷 24, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-023-09242-3

关键词

Spiraea; Chloroplast genome; Phylogenetic analysis; Rosaceae

向作者/读者索取更多资源

In this study, the chloroplast genomes of ten Spiraea species were analyzed and compared with five previously reported genomes. The results showed that the genomes were highly conserved, but there were polymorphic sites and mutation hotspots that could be used as molecular markers for species identification.
BackgroundSpiraea is a genus of deciduous shrubs that contains 80-120 species, is mainly distributed in the Northern Hemisphere and has diversified in East Asia. Spiraea species are cultivated as ornamental plants and some are used in traditional herbal medicine. Based on morphological characteristics and genetic markers, phylogenetic classification exhibits low discriminatory power.ResultsIn present study, we assembled and characterized the chloroplast (cp) genomes of ten Spiraea species and comparatively analysed with five reported cp genomes of this genus. The cp genomes of the fifteen Spiraea species, ranging from 155,904 to 158,637 bp in length, were very conserved and no structural rearrangements occurred. A total of 85 protein-coding genes (PCGs), 37 tRNAs and 8 rRNAs were annotated. We also examined 1,010 simple sequence repeat (SSR) loci, most of which had A/T base preference. Comparative analysis of cp genome demonstrated that single copy and non-coding regions were more divergent than the inverted repeats (IRs) and coding regions and six mutational hotspots were detected. Selection pressure analysis showed that all PCGs were under purifying selection. Phylogenetic analysis based on the complete cp genome data showed that Spiraea formed a monophyletic group and was further divided into two major clades. Infrageneric classification in each clade was supported with a high resolution value. Moreover, the phylogenetic trees based on each individual mutational hotspot segment and their combined dataset also consisted of two major clades, but most of the phylogenetic relationships of interspecies were not well supported.ConclusionsAlthough the cp genomes of Spiraea species exhibited high conservation in genome structure, gene content and order, a large number of polymorphism sites and several mutation hotspots were identified in whole cp genomes, which might be sufficiently used as molecular markers to distinguish Spiraea species. Phylogenetic analysis based on the complete cp genome indicated that infrageneric classification in two major clades was supported with high resolution values. Therefore, the cp genome data of the genus Spiraea will be effective in resolving the phylogeny in this genus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据