4.3 Article

Just add small molecules cell-free protein synthesis: Combining DNA template and cell extract preparation into a single fermentation

期刊

BIOTECHNOLOGY PROGRESS
卷 39, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/btpr.3332

关键词

-

向作者/读者索取更多资源

Cell-free protein synthesis (CFPS) is a versatile biotechnology platform with applications in clinical diagnostics, therapeutics production, and research. However, CFPS systems are time-consuming and expensive. This work presents a new CFPS system that reduces reagent cost and preparation time by eliminating the need for separately purified DNA templates. This system shows potential for cost reduction and use in low-resource settings.
Cell-free protein synthesis (CFPS) is a versatile biotechnology platform enabling a broad range of applications including clinical diagnostics, large-scale production of officinal therapeutics, small-scale on-demand production of personal magistral therapeutics, and exploratory research. The shelf stability and scalability of CFPS systems also have the potential to overcome cost and infrastructure challenges for distributing and using essential medical tests at home in both high- and low-income countries. However, CFPS systems are often more time-consuming and expensive to prepare than traditional in vivo systems, limiting their broader use. Much work has been done to lower CFPS costs by optimizing cell extract preparation, small molecule reagent recipes, and DNA template preparation. In order to further reduce reagent cost and preparation time, this work presents a CFPS system that does not require separately purified DNA template. Instead, a DNA plasmid encoding the recombinant protein is transformed into the cells used to make the extract, and the extract preparation process is modified to allow enough DNA to withstand homogenization-induced shearing. The finished extract contains sufficient levels of intact DNA plasmid for the CFPS system to operate. For a 10 mL scale CFPS system expressing recombinant sfGFP protein for a biosensor, this new system reduces reagent cost by more than half. This system is applied to a proof-of-concept glutamine sensor compatible with smartphone quantification to demonstrate its viability for further cost reduction and use in low-resource settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据