4.6 Article

etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/bit.28355

关键词

Bacillus subtilis; comprehensive multiscale metabolic model; enzymatic constraints; thermodynamics constraints; transcriptional regulatory network model

向作者/读者索取更多资源

This study constructed a new genome-scale metabolic model for Bacillus subtilis, which accurately predicted the growth of mutants under different culture conditions. A software tool was also developed for model reconstruction and analysis. This model was further used to guide a metabolic engineering strategy, resulting in increased production of the nutraceutical menaquinone-7.
Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据