4.7 Review

Modulating antibody effector functions by Fc glycoengineering

期刊

BIOTECHNOLOGY ADVANCES
卷 67, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2023.108201

关键词

Antibody; IgG; Glycoengineering; Endoglycosidase; Glycosynthase; N-glycosylation

向作者/读者索取更多资源

Antibody-based drugs, including IgG monoclonal antibodies, are widely used for treating cancer, autoimmune, and infectious diseases. Different glycoforms attached to antibodies can affect their efficacy, stability, and effector functions. Therefore, various antibody engineering strategies have been developed to produce antibodies with tailored glycoforms.
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, gal-actosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据