4.7 Article

Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis

期刊

CELLULOSE
卷 23, 期 1, 页码 145-161

出版社

SPRINGER
DOI: 10.1007/s10570-015-0789-6

关键词

Arabidopsis thaliana; Cellulose synthesis; Computational protein structure prediction; Isoform specificity; Mutant complementation

资金

  1. Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001090]

向作者/读者索取更多资源

Seed plants express cellulose synthase (CESA) protein isoforms with non-redundant functions, but how the isoforms function differently is unknown. Compared to bacterial cellulose synthases, CESAs have two insertions in the large cytosolic loop: the relatively well-conserved Plant Conserved Region (P-CR) and a Class Specific Region (CSR) that varies between CESAs. Absent any atomic structure of a plant CESA, we used ab initio protein structure prediction and molecular modeling to explore how these plant-specific regions may modulate CESA function. We modeled P-CR and CSR peptides from Arabidopsis thaliana CESAs representing the six clades of seed plant CESAs. As expected, the predicted wild type P-CR structures were similar. Modeling of the mutant P-CR of Atcesa8 (R362K) (fra6) suggested that changes in local structural stability and surface electrostatics may cause the mutant phenotype. Among CSRs within CESAs required for primary wall cellulose synthesis, the amino sequence and the modeled arrangement of helices was most similar in AtCESA1 and AtCESA3. Genetic complementation of known Arabidopsis mutants showed that the CSRs of AtCESA1 and AtCESA3 can function interchangeably in vivo. Analysis of protein surface electrostatics led to ideas about how the surface charges on CSRs may mediate protein-protein interactions. Refined modeling of the P-CR and CSR regions of GhCESA1 from cotton modified their tertiary structures, spatial relationships to the catalytic domain, and preliminary predictions about CESA oligomer formation. Cumulatively, the results provide structural clues about the function of plant-specific regions of CESA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据