4.7 Article

Acute ATP loss during irreversible electroporation mediates caspase independent cell death

期刊

BIOELECTROCHEMISTRY
卷 150, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2022.108355

关键词

Electroporation; Cell death; Apoptosis; ATP loss; Caspase signaling; Necrosis

向作者/读者索取更多资源

Irreversible electroporation (IRE) can cause apoptosis, necrosis, oncosis, or pyroptosis. The mode of cell death following IRE is determined by intracellular ATP levels. Cell death after IRE is insensitive to caspase inhibition and is correlated with ATP loss, which cannot be rescued by ATP supplementation.
Irreversible electroporation (IRE) has been reported to variably cause apoptosis, necrosis, oncosis or pyroptosis. Intracellular ATP is a key substrate for apoptosis which is rapidly depleted during IRE, we sought to understand whether intracellular ATP levels is a determinant of the mode of cell death following IRE. A mouse bladder cancer cell line (MB49) was treated with electric fields while increasing the number of pulses at a fixed electric field strength, and pulse width. Cell proliferation and viability and ATP levels were measured at different timepoints post-treatment. Cell death was quantified with Annexin-V/Propidium Iodide staining. Caspase ac-tivity was measure with a fluorometric kit and western blotting. A pan-caspase (Z-VAD-FMK) inhibitor was used to assess the impact of signal inhibition. We found cell death following IRE was insensitive to caspase inhibition and was correlated with ATP loss. These findings were confirmed by cell death assays and measurement of changes in caspase expression on immunoblotting. This effect could not be rescued by ATP supplementation. Rapid and acute ATP loss during IRE interferes with caspase signaling, promoting necrosis. Cell necrosis from IRE is expected to be immunostimulatory and may be effective in cancer cells that carry mutated or defective apoptosis genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据