4.4 Article

Structure-Based Optimization of Protease-Inhibitor Interactions to Enhance Specificity of Human Stefin-A against Falcipain-2 from the Plasmodium falciparum 3D7 Strain

期刊

BIOCHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.2c00585

关键词

-

向作者/读者索取更多资源

The emergence of resistance to malaria drugs has raised concerns and highlighted the need for new drug targets. This study identifies human stefin-A (STFA) as an effective inhibitor of the malarial enzyme falcipain-2 (FP2), and demonstrates that a mutation in STFA enhances selectivity. The findings provide insights for the design of host-based protein inhibitors against FP2.
The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2), involved in host hemoglobin degradation and instrumental in parasite survival, has long been proposed as a promising malarial drug target. However, designing active-site-targeted small-molecule inhibitors of FP2 becomes challenging due to their off-target specificity toward highly homologous human cysteine cathepsins. The use of proteinaceous inhibitors, which have nonconserved exosite interactions and larger interface area, can effectively circumvent this problem. In this study, we report for the first time that human stefin-A (STFA) efficiently inhibits FP2 with Ki values in the nanomolar range. The FP2-STFA complex crystal structure, determined in this study, and sequence analyses identify a unique nonconserved exosite interaction, compared to human cathepsins. Designing a mutation Lys68 > Arg in STFA amplifies its selectivity garnering a 3.3-fold lower Ki value against FP2, and the crystal structure of the FP2-STFAK68R complex shows stronger electrostatic interaction between side-chains of Arg68 (STFAK68R) and Asp109 (FP2). Comparative structural analyses and molecular dynamics (MD) simulation studies of the complexes further confirm higher buried surface areas, better interaction energies for FP2-STFAK68R, and consistency of the newly developed electrostatic interaction (STFA-R68-FP2-D109) in the MD trajectory. The STFA-K68R mutant also shows higher Ki values against human cathepsin-L and stefin, a step toward eliminating off-target specificity. Hence, this work underlines the design of host-based proteinaceous inhibitors against FP2, with further optimization to render them more potent and selective.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据