4.7 Article

Orobol, 3′-hydroxy-genistein, suppresses the development and regrowth of cutaneous SCC

期刊

BIOCHEMICAL PHARMACOLOGY
卷 209, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2023.115415

关键词

Squamous cell carcinoma; UV radiation; Solar -simulated light; Skin carcinogenesis; Signaling

向作者/读者索取更多资源

Chronic solar ultraviolet exposure is a major risk factor for cutaneous squamous cell carcinoma (cSCC). Orobol directly binds to TOPK and inhibits its activity, showing therapeutic efficacy in mouse models. Orobol could be a promising clinical approach for preventing and treating cSCC.
Chronic solar ultraviolet exposure is a major risk factor for cutaneous squamous cell carcinoma (cSCC), which is the second most common type of skin cancer. Our previous data showed that total protein and phosphorylation levels of T-LAK cell-originated protein kinase (TOPK) were enhanced in solar-simulated light (SSL)-induced skin carcinogenesis and overexpressed in actinic keratosis (AK) and cSCC human skin tissues compared to those in matched normal skin. Thus, targeting TOPK activity could be a helpful approach for treating cSCC. Our data showed that orobol directly binds to TOPK in an ATP-independent manner and inhibits TOPK kinase activity. Furthermore, orobol inhibited anchorage-independent colony formation by SCC12 cells in a dose-dependent manner. After discontinuing the treatment, patients commonly return to tumor-bearing conditions; therefore, therapy or intermittent dosing of drugs must be continued indefinitely. Thus, to examine the efficacy of orobol against the development and regrowth of cSCC, we established mouse models including prevention, and ther-apeutic models on the chronic SSL-irradiated SKH-1 hairless mice. Early treatment with orobol attenuates chronic SSL-induced cSCC development. Furthermore, orobol showed therapeutic efficacy after the formation of chronic SSL irradiation-induced tumor. In the mouse model with intermittent dosing of orobol, our data showed that re-application of orobol is effective for reducing tumor regrowth after discontinuation of treatment. Moreover, oncogenic protein levels were significantly attenuated by orobol treatment in the SSL-stimulated human skin. Thus, we suggest that orobol, as a promising TOPK inhibitor, could have an effective clinical approach to prevent and treat the development and regrowth of cSCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据