4.1 Article

Towards quantifying uncertainties in geological models for mineral resource estimation through outside-in deposit-scale structural geological analysis

期刊

AUSTRALIAN JOURNAL OF EARTH SCIENCES
卷 70, 期 7, 页码 990-1009

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/08120099.2023.2217882

关键词

Maximum Intensity Projection; structural geology; resource geology; gold; implicit modelling; axial symmetry; resource risk; mineral resources

向作者/读者索取更多资源

Mineral Resource downgrades can be prevented by integrating better structural geological interpretations into project evaluations. Geological modelling for Mineral Resource estimation is presented as a systematic process of structural geological analysis at the deposit-scale using drill-sampled grade data. Adopting this new approach means moving away from conventional mining industry methods that fail to explain the geometric complexities of mineral deposits.
Mineral Resource downgrades can be prevented by integrating better structural geological interpretations into project evaluations. Geological modelling for Mineral Resource estimation is presented as a systematic process of structural geological analysis at the deposit-scale using drill-sampled grade data. The initial step in this process is to use Maximum Intensity Projection (MIP) rendering to interpret axial symmetry and its orientation from the grade interval mid-points at the deposit-scale, thus reducing the modelling process's degrees of freedom to only three-estimating the prolateness of the grade or lithological distribution. This approach contrasts with the brute-force methods for assessing modelling uncertainty because the axial direction is fixed to the down-plunge orientation, thus eliminating from the outset, structurally implausible geometric configurations and unrealistic geological scenarios common in brute-force methods. Adopting this new approach of creating geological models means moving away from conventional mining industry methods that prioritise operational considerations in constructing resource estimates but fail to explain the geometric complexities of mineral deposits. We use experiments and a practical case study of a historical gold mine in Western Australia to highlight the significance of analysing the structural control of a gold deposit at the deposit-scale using raw grade data. Our research is based on anecdotal evidence suggesting that erroneous geological modelling leads to unforeseen Mineral Resource downgrades. However, we cannot confirm this hypothesis because there have been few, if any, independent public inquiries into Mineral Resource downgrades. To establish the underlying reasons for significant resource downgrades with certainty, impartial investigations (modelled on accident investigations in the aviation industry) are imperative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据