4.7 Article

Modeling hydrological non-stationarity to analyze environmental impacts on drought propagation

期刊

ATMOSPHERIC RESEARCH
卷 286, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2023.106699

关键词

Bayesian network model; Climate change; Drought propagation; Han River Basin; Empirical segmentation method; Human activities

向作者/读者索取更多资源

Climate variation and anthropic activities have significant impacts on the hydrologic cycle and the relationships between different drought types. This study used empirical segmentation analysis to detect abrupt changes in the yearly hydrological time series of the Han River Basin. The results showed that extreme meteorological drought conditions were more likely to lead to extreme hydrological drought conditions, and this likelihood increased significantly after a certain point in time.
Climate variation and anthropic activities are two key driving forces that impact the hydrologic cycle as well as the relationships between different drought types. Thus, it is essential to evaluate the impacts of environmental variations on the relationship between meteorological and hydrological droughts. In this study, abrupt changes in the yearly hydrological time series (streamflow) of the Han River Basin (HRB) were detected using a non-linearity-based empirical segmentation approach. The Standardized Precipitation Evapotranspiration Index (SPEI) was employed to model meteorological drought, while the Generalized Additive Model for Location, Scale and Shape (GAMLSS) algorithm was adopted to model the non-linear hydrological time series to obtain the non-stationarity based Standardized Runoff Index (SRINS). Correlation analyses were conducted on meteorological droughts (as presented by SPEI) and the hydrological drought data (as presented by the SRINS). A Bayesian network model (BNM) was employed to calculate the propagation likelihood of different categories of meteo-rological droughts resulting in hydrological droughts. Change points in the hydrological regime were identified based on the empirical segmentation analysis after the 1990s. Significant increasing trends in urbanization, gross domestic product, and population were observed after the change points. The correlation analysis showed that the seasonal (3-month) timescale of SPEI corresponded best to the three-month SRINS. The BNM revealed that the average propagation likelihoods of severe and extreme categories of meteorological drought resulting in severe and extreme categories of hydrological drought were 23.6% and 18.2%, respectively, due to the influence of climate change. These probabilities were increased by 53.9% and 70.8%, respectively, in the human impacted era due to high pressure on water resources caused by increased population, industrialization, water extraction, etc. In conclusion, the likelihood of extreme conditions of meteorological drought resulting in extreme hydro-logical drought was increased significantly after the change points.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据