4.7 Article

Quasi-elastodynamic Processes Involved in the Interaction between Solar Wind and Magnetosphere

期刊

ASTROPHYSICAL JOURNAL
卷 946, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-4357/acbe9b

关键词

-

向作者/读者索取更多资源

The interaction between the solar wind and the magnetosphere is a crucial research subject. The dynamic processes at the magnetopause have been extensively analyzed based on various factors. This study proposes a quasi-elastodynamic process to explain the responses of the magnetopause to solar wind dynamic pressure variations. A new three-dimensional time-dependent magnetopause model is constructed and performs better than the widely used time-independent model.
The interaction between the solar wind and the magnetosphere is one of the most important research subjects in the fields of astrophysics and space physics. For more than half a century, based on the pressure balance assumption between the solar wind and the magnetosphere and considering other important factors, such as the interplanetary magnetic field and magnetic reconnection process, the dynamic processes at the magnetopause have been extensively analyzed. However, the responses of magnetopause to the solar wind dynamic pressure variations are still complicated to understand. Here, we show that the interaction between the solar wind and the magnetosphere can be regarded as a quasi-elastodynamic process. The driving frequency of the solar wind is determined as a crucial reason for the phase difference between solar wind dynamic pressure variations and magnetopause standoff distance. The low-pass filter effect and oscillation properties of the magnetopause can also be well explained by the forced damped vibrations. Moreover, the quasi-elastodynamic processes predict deformations at the magnetopause, which resemble the magnetopause surface wave. Finally, a three-dimensional time-dependent magnetopause model is constructed and verified by observation. Based on 12,242 magnetopause crossing events, it is found that the new model reveals similar to 9.7% better prediction accuracy than the widely used time-independent model. These results can also shed light on our understanding of the solar-wind-magnetopause interaction for other planets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据