4.6 Article

Radio continuum tails in ram pressure-stripped spiral galaxies: Experimenting with a semi-empirical model in Abell 2255

期刊

ASTRONOMY & ASTROPHYSICS
卷 675, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202346517

关键词

radio continuum; galaxies; clusters; individual; Abell 2255; methods; observational

向作者/读者索取更多资源

We present a semi-empirical model for studying the radio tails of spiral galaxies in galaxy clusters, based on observations and measurements of flux density and spectral index profiles. Our model reproduces the observed trends and infers the velocity of the stripped nonthermal interstellar medium, providing the first indirect measurement of its velocity.
Context. Wide-field radio continuum observations of galaxy clusters are revealing an increasing number of spiral galaxies hosting tens of kiloparsec-length radio tails produced by the displacement of nonthermal interstellar medium (ISM) by ram pressure.Aims. We present a semi-empirical model for the multifrequency radio continuum emission from ram-pressure-stripped tails based on the pure synchrotron cooling of a radio plasma moving along the stripping direction with a uniform velocity.Methods. We combine LOFAR and uGMRT observations at 144 and 400 MHz to study the flux density and spectral index profiles of the radio tails of seven galaxies in Abell 2255, and use the model to reproduce the flux density and spectral index profiles, and infer the stripped radio plasma velocity.Results. For five out of these seven galaxies, we observe a monotonic decrease in both flux density and spectral index up to 30 kpc from their stellar disk. Our model reproduces the observed trends with a projected radio plasma bulk velocity of between 160 and 430 km s(-1). This result represents the first indirect measurement of the stripped, nonthermal ISM velocity. The observed spectral index trends indicate that the synchrotron cooling is faster than the adiabatic expansion losses, suggesting that the stripped radio plasma can survive for a few tens of million years outside of the stellar disk. This provides a lower limit on the lifetime of the stripped ISM outside of the disk. As a proof of concept, we use the best-fit velocities to constrain the 3D velocity of the galaxies in the cluster to be in the range of 300-1300 km s(-1). We estimate the ram pressure affecting these galaxies to be between 0.1 and 2.9 x 10(-11) erg cm(-3), and measure the inclination between their stellar disk and the ram pressure wind.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据