4.7 Article

Heterocyclic amines reduce insulin-induced AKT phosphorylation and induce gluconeogenic gene expression in human hepatocytes

期刊

ARCHIVES OF TOXICOLOGY
卷 -, 期 -, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00204-023-03488-2

关键词

Heterocyclic amines; Hepatocytes; Insulin resistance; Gluconeogenesis

向作者/读者索取更多资源

Heterocyclic amines (HCAs) are mutagenic substances that can be consumed through cooked meat, and recent studies have found a significant association between dietary HCA exposure and insulin resistance and type II diabetes. This study investigated the effects of three HCAs commonly found in cooked meat on insulin signaling and glucose production in human hepatocytes, and found that HCA exposure decreases insulin signaling and promotes hepatic glucose production.
Heterocyclic amines (HCAs) are well-known for their mutagenic properties. One of the major routes of human exposure is through consumption of cooked meat, as certain cooking methods favor formation of HCAs. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. However, no previous studies have examined if HCAs, independent of meat consumption, contributes to pathogenesis of insulin resistance or metabolic disease. In the present study, we have assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on insulin signaling and glucose production. HepG2 or cryopreserved human hepatocytes were treated with 0-50 mu M of MeIQ, MeIQx, or PhIP for 3 days. Treatment of HepG2 cells and hepatocytes with MeIQ and MeIQx resulted in a significant reduction in insulin-induced AKT phosphorylation, suggesting that HCA exposure decreases hepatic insulin signaling. HCA treatment also led to significant increases in expression of gluconeogenic genes, G6PC and PCK1, in both HepG2 and cryopreserved human hepatocytes. Additionally, the level of phosphorylated FOXO1, a transcriptional regulator of gluconeogenesis, was significantly reduced by HCA treatment in hepatocytes. Importantly, HCA treatment of human hepatocytes led to increases in extracellular glucose level in the presence of gluconeogenic substrates, suggesting that HCAs induce hepatic glucose production. The current findings suggest that HCAs induce insulin resistance and promote hepatic glucose production in human hepatocytes. This implicates that exposure to HCAs may lead to the development of type II diabetes or metabolic syndrome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据