4.7 Article

Performance improvement of blue TADF top-emission OLEDs by tuning hole injection barriers using a nickel-doped silicon dioxide buffer layer

期刊

APPLIED SURFACE SCIENCE
卷 612, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.155948

关键词

Blue thermally activated delayed fluorescence; Top-emission organic light-emitting diodes; Charge injection balance; Wide-bandgap buffer layer; Color purity

向作者/读者索取更多资源

Blue TADF top-emission organic light-emitting diodes (OLEDs) with a second-order microcavity structure exhibit high external quantum efficiency (-20.2%) and narrow full width at half maximum (29 nm) by incorporating a Ni-doped SiO2 buffer layer that balances injection charges. The wide bandgap of SiO2 prevents rapid hole injection from the anode and modifies the anode-organic layer interface, while tuning of the Ni doping concentration reduces the turn-on voltage of the device through co-sputtering. The charge balance mechanism is elucidated by analyzing tunneling effects across the buffer layer and the bonding states of Ni atoms in the SiO2 film. This study can promote the development of TADF top-emission devices with high efficiency and color purity.
The severe exciton self-quenching and twisted structure of typical thermally activated delayed fluorescence (TADF) emitters result in a low external quantum efficiency (EQE) and broad emission spectrum, especially in blue organic light-emitting diodes (OLEDs). These challenges have been overcome by employing complex device fabrication steps and complex molecular structures requiring fine stoichiometric adjustments. However, only a few attempts have been made to improve the performance of OLEDs through device structure engineering, particularly in top-emission OLEDs (TEOLEDs). Herein, we report blue TADF TEOLEDs fabricated by employing a second-order microcavity structure. These TEOLEDs simultaneously exhibit a high EQE (-20.2 %) and narrow full width at half maximum (29 nm) owing to the incorporation of a Ni-doped SiO2 buffer layer that balances the injection charges. The wide bandgap of SiO2 prevents rapid hole injection from the anode and modifies the anode-organic layer interface, while tuning of the Ni doping concentration reduces the turn-on voltage of the device through co-sputtering. The charge balance mechanism is elucidated in detail by analyzing tunneling ef-fects across the buffer layer and the bonding states of Ni atoms in the SiO2 film. This study can promote the development of TADF top-emission devices with high efficiency and high color purity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据