4.7 Article

Highly sensitive and lower detection-limit NO2 gas sensor based on Rh-doped ZnO nanofibers prepared by electrospinning

期刊

APPLIED SURFACE SCIENCE
卷 614, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.156213

关键词

NO2 gas sensor; Rh doping; ZnO; Electrospinning

向作者/读者索取更多资源

NO2 is a toxic gas that can cause damage to the environment and pose a threat to human health. Developing a highly sensitive NO2 gas sensor is necessary. Rh-doped ZnO nanofibers were prepared by electrospinning and the successful doping of Rh was confirmed through XRD and XPS analysis. The fabricated NO2 gas sensor based on 1% Rh-doped ZnO nanofibers exhibited high sensitivity, with a detection limit of 50 ppb and response values (Rg/Ra) of 1.04 and 36.17 for 50 ppb and 10 ppm NO2, respectively. The sensor also showed good selectivity, repeatability, and linearity with relative humidity.
As a kind of toxic gas, NO2 can cause damages to the environment and threaten the health of human beings. To develop highly sensitive NO2 gas sensor is necessary. Here, the Rh-doped ZnO nanofibers were prepared by electrospinning. The Rietveld refinements results of XRD patterns have proved the successful doping of Rh into the crystal lattice of ZnO. The XPS spectra reveals the existence of large amounts of surface oxygen vacancy defects, which are beneficial to the enhancement of the sensitivity. The morphology and crystal lattice of the nanofibers were investigated by SEM and HRTEM, respectively. The highly sensitive NO2 gas sensor based on 1% Rh-doped ZnO nanofibers, with the experimental detection limit of 50 ppb (or 18.6 ppb, theoretical signal-to-noise ratio > 3) was fabricated. At the optimal operating temperature of 150 degrees C, its response values (Rg/Ra) are 1.04 and 36.17, with the corresponding response time of 45 s and 32 s, towards 50 ppb and 10 ppm NO2, respectively. The sensor also exhibits good selectivity, repeatability and linearity between the relative humidity and the response values. The doping of Rh introduces large amounts of surface oxygen vacancy defects. The defects are more favored adsorption sites for NO2. The reasons for the ultrasensitivity of the sensor are as followings: (1) The binding energy between NO2 and ZnO with surface oxygen vacancy defects is about 1.5 times stronger than that for adsorption on the stoichiometric surface; (2) The surface oxygen vacancies of ZnO can have a reaction with NO2 to produce NO inducing the charge transfer; (3) The catalytic activities of Rh towards NO2 and H2O.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据