4.7 Article

Biocompatible and antimicrobial multilayer fibrous polymeric wound dressing with optimally embedded silver nanoparticles

期刊

APPLIED SURFACE SCIENCE
卷 612, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.155799

关键词

Electrospinning; Ultrafine fiber; Silver nanoparticle; Antibacterial; Cell attachment and wound healing

向作者/读者索取更多资源

A three-layer polymer nanofiber mesh with antibacterial properties has been developed using electrospinning. The mesh is capable of killing bacteria and has cytocompatibility, making it suitable for treating severe skin wounds. The second layer of the mesh contains silver nanoparticles for antibacterial activity, while the third layer acts as a hydrophilic, non-adhesive barrier to aid in wound healing. The study emphasizes the importance of optimizing the properties of antibacterial meshes to achieve a balance between high antibacterial activity and low toxicity.
The demand for advanced, biocompatible wound dressings with antibacterial properties is increasing in order to treat people with severe skin wounds, such as burn victims or those suffering from ulcers. We have developed an ultrafine three-layer polymer nanofiber mesh using electrospinning that is able to kill bacteria (Escherichia coli; E. coli and Staphylococcus aureus; S. aureus) but also has cytocompatibility properties. The first layer was generated with polystyrene (PS) for strength and functions as a carrier layer. The second layer consisted of poly-caprolactone (PCL) with silver nanoparticles (Ag NPs) that were added to the spinning solution, which had antibacterial properties. Finally, the third layer comprised of polyethylene oxide (PEO) acting as a hydrophilic, barrier layer that was also non-adhesive, with the potential to further assist in wound healing. Systematic physicochemical and biological characterization was performed including dynamic light scattering (DLS), UV spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM), water contact angles, evaluation of antibacterial properties, and cell attachment and proliferation assays. The cumulative Ag ion release was optimized for a period up to 84 days in physiologically similar media at physiological temperature. Chemical, mechanical, and biological analysis demonstrated that incorporation of Ag NPs at higher quantities into the PCL fibers layer providing excellent antimicrobial activity with minimal toxicity at low concentration. The findings highlight the importance of optimizing the properties of Ag based antibacterial meshes to find the balance be-tween high antibacterial activity and low toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据