4.7 Article

Effect of functionalization and defects on thermal conductivity of graphene sheets modified asphalt nanocomposites

期刊

APPLIED SURFACE SCIENCE
卷 621, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2023.156804

关键词

Asphalt; Energy harvesting; Functionalized graphene; Molecular dynamics simulations; Thermal conductivity

向作者/读者索取更多资源

The effects of functional groups and defects of graphene on the thermal conductivity of asphalt/graphene nanocomposites are investigated by molecular dynamics simulations. The results show that functionalized graphene is beneficial to the interfacial thermal conductance, with the butyl group increasing the thermal conductivity twofold compared to pristine graphene. Functionalized groups promote phonon transport at the asphalt/graphene interface. The predominant factor determining the thermal conductivity of asphalt nanocomposites changes from the interface-dominant mode to the filler-dominant mode when crossing the critical size.
Functionalized graphene has great potential to improve the energy harvesting properties of asphalt pavements due to its superior thermal conductivity. However, the effects of functional groups and defects of graphene on the thermal conductivity of asphalt/graphene nanocomposites remain unclear. In this study, the influence of func-tional groups and defects on the thermal conductivity of graphene modified asphalt are comprehensively explored by molecular dynamics simulations. Results show that functionalized graphene is beneficial to the interfacial thermal conductance, and the butyl group increases twofold due to its interfacial penetration compared to the pristine one. The incorporation of functionalized groups can promote phonon transport at the asphalt/graphene interface. The predominant factor determining the thermal conductivity of asphalt nano-composites changes from the interface-dominant mode to the filler-dominant mode when crossing the critical size. These findings can provide valuable information on the role of functional groups and defects in the thermal conductivity of asphalt nanocomposites, which is beneficial for developing asphalt pavements with advanced energy harvesting ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据