4.6 Article

Magnetic field imaging by hBN quantum sensor nanoarray

期刊

APPLIED PHYSICS LETTERS
卷 122, 期 24, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0147072

关键词

-

向作者/读者索取更多资源

Placing a sensor close to the target at the nano-level is a central challenge in quantum sensing. We demonstrate magnetic field imaging with a boron vacancy (V-B(-)) defects array in hexagonal boron nitride with a few 10 nm thickness. The sensor array allows us to visualize the magnetic field induced by the current in the straight micro wire with a high spatial resolution. Each sensor exhibits a practical sensitivity of 73.6 mu T/Hz(0.5), suitable for quantum materials research. Our technique of arranging V-B(-) quantum sensors periodically and tightly on measurement targets will maximize their potential.
Placing a sensor close to the target at the nano-level is a central challenge in quantum sensing. We demonstrate magnetic field imaging with a boron vacancy (V-B(-)) defects array in hexagonal boron nitride with a few 10 nm thickness. V-B(-) sensor spots with a size of (100 nm)(2) are arranged periodically with nanoscale accuracy using a helium ion microscope and attached tightly to a gold wire. The sensor array allows us to visualize the magnetic field induced by the current in the straight micro wire with a high spatial resolution. Each sensor exhibits a practical sensitivity of 73.6 mu T/Hz(0.5), suitable for quantum materials research. Our technique of arranging V-B(-) quantum sensors periodically and tightly on measurement targets will maximize their potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据