4.6 Article

Stability of laser cavity-solitons for metrological applications

期刊

APPLIED PHYSICS LETTERS
卷 122, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0134147

关键词

-

向作者/读者索取更多资源

A detailed study on the free-running stability properties of single solitons is presented, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. The carrier frequency and repetition rate can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization.
Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical carrier and repetition rate (i.e., 48.9 GHz) frequencies on the order of 10(-9) for a 1 s gate time. The repetition rate results compare well with the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据