4.6 Article

Direct measurement of electrocaloric effect based on multi-harmonic lock-in thermography

期刊

APPLIED PHYSICS LETTERS
卷 122, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0137686

关键词

-

向作者/读者索取更多资源

We present a direct measurement method for electrocaloric effects in dielectric materials based on lock-in thermography technique. The method utilizes sinusoidal excitation and multi-harmonic detection to measure the actual temperature change in the frequency domain, even when the electrocaloric effect exhibits a nonlinear response. We demonstrated the method by measuring the temperature dependence of electric-field-induced temperature change in Sr-doped BaTiO3 systems and extracting the pure electrocaloric contribution free from heat losses and Joule heating.
We report on a direct measurement method for electrocaloric effects, the heating/cooling upon application/removal of an electric field in dielectric materials, based on a lock-in thermography technique. By use of sinusoidal excitation and multi-harmonic detection, the actual temperature change can be measured by a single measurement in the frequency domain even when the electrocaloric effect shows a nonlinear response to the excitation field. We demonstrated the method by measuring the temperature dependence of the electric-field-induced temperature change in two Sr-doped BaTiO3 systems with different ferroelectric-paraelectric phase transition temperatures, where we introduce the procedure for extracting the pure electrocaloric contribution free from heat losses and Joule heating due to leakage currents. This method can be used irrespective of the type of dielectric material and enables simultaneous estimation of the polarization change and power dissipation during the application of an electric field, making it a convenient imaging measurement method for the electrocaloric effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据