4.6 Article

Ultrafast, room temperature rejuvenation of SiC Schottky diodes from forward current-induced degradation

期刊

APPLIED PHYSICS LETTERS
卷 122, 期 20, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0140490

关键词

-

向作者/读者索取更多资源

In this work, we illustrate the rejuvenation of degraded Ti/4H-SiC Schottky barrier diodes at room temperature within seconds by utilizing high-energy electron interactions with defects. By applying high current density electrical pulsing with low frequency and duty cycle to suppress temperature rise, we successfully decrease defect concentration and improve device performance beyond the pristine condition. The ultrafast and room temperature process has the potential to rejuvenate electronic devices in high power and harsh environmental conditions.
In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or just in location mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据