4.5 Article

Low magnetic damping in an ultrathin CoFeB layer deposited on a 300 mm diameter wafer at cryogenic temperature

期刊

APPLIED PHYSICS EXPRESS
卷 16, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.35848/1882-0786/acbae1

关键词

magnetic tunnel junction; ferromagnetic resonance; magnesium oxide; CoFeB; magnetic damping

向作者/读者索取更多资源

We deposited a 1.1 nm ultrathin CoFeB layer as the storage layer for MgO-based magnetic tunnel junctions in spin-transfer-torque (STT) magnetoresistive random-access memory (MRAM) on phi 300 mm wafers at 100 K, and investigated its effect on the magnetization dynamics of CoFeB. The results show that deposition at cryogenic temperatures is an effective manufacturing process for high-quality magnetic thin films with low magnetic damping, achieved through the improvement in the interfacial quality.
We deposited an ultrathin CoFeB(1.1 nm) layer, which functions as a storage layer of MgO-based magnetic tunnel junctions for spin-transfer-torque (STT) magnetoresistive random-access memory (MRAM), on phi 300 mm wafers at 100 K and investigated its effect on the magnetization dynamics of CoFeB. We observed clear reductions in both the inhomogeneous linewidth and total magnetic damping parameter for the CoFeB layer deposited at 100 K compared to those deposited at 300 K through the improvement in the interfacial quality. The results show that deposition at cryogenic temperatures is an effective manufacturing process for high-quality magnetic thin films with low magnetic damping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据