4.7 Article

Synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under methanethiol stress

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 107, 期 9, 页码 3099-3111

出版社

SPRINGER
DOI: 10.1007/s00253-023-12472-w

关键词

Methanotrophs; Methylotrophs; Methanethiol degradation; Methane oxidation; Sulfur conversion; Methane-derived carbon

向作者/读者索取更多资源

Methanotrophs have the ability to metabolize volatile organic sulfur compounds (VOSCs), excrete organic carbon during CH4 oxidation, and influence the microbial community structure and function of the ecosystem. This study investigated the synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under VOSC stress, using methanethiol (MT) as a typical VOSC. The results showed that the co-culture of Methylomonas koyamae and Hyphomicrobium methylovorum had better MT tolerance and enhanced CH4 and MT removal. These findings contribute to understanding the role of methanotrophs in the sulfur biogeochemical cycle.
Methanotrophs are able to metabolize volatile organic sulfur compounds (VOSCs), excrete organic carbon during CH4 oxidation, and influence microbial community structure and function of the ecosystem. In return, microbial community structure and environmental factors can affect the growth metabolism of methanotrophs. In this study, Methylomonas koyamae and Hyphomicrobium methylovorum were used for model organisms, and methanethiol (MT) was chosen for a typical VOSC to investigate the synergy effects under VOSC stress. The results showed that when Hyphomicrobium methylovorum was co-cultured with Methylomonas koyamae in the medium with CH4 used as the carbon source, the co-culture had better MT tolerance relative to Methylomonas koyamae and oxidized all CH4 within 120 h, even at the initial MT concentration of 2000 mg m(-3). The optimal co-culture ratios of Methylomonas koyamae to Hyphomicrobium methylovorum were 4:1-12:1. Although MT could be converted spontaneously to dimethyl disulfide (DMDS), H2S, and CS2 in air, faster losses of MT, DMDS, H2S, and CS2 were observed in each strain mono-culture and the co-culture. Compared with Hyphomicrobium methylovorum, MT was degraded more quickly in the Methylomonas koyamae culture. During the co-culture, the CH4 oxidation process of Methylomonas koyamae could provide carbon and energy sources for the growth of Hyphomicrobium methylovorum, while Hyphomicrobium methylovorum oxidized MT to help Methylomonas koyamae detoxify. These findings are helpful to understand the synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under MT stress and enrich the role of methanotrophs in the sulfur biogeochemical cycle. Key points The co-culture of Methylomonas and Hyphomicrobium has better tolerance to CH3SH. Methylomonas can provide carbon sources for the growth of Hyphomicrobium. The co-culture of Methylomonas and Hyphomicrobium enhances the removal of CH4 and CH3SH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据