4.8 Article

Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process

期刊

APPLIED ENERGY
卷 333, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2022.120599

关键词

Hybrid electric vehicle; Reinforcement learning; Adaptive cruise control; Energy management

向作者/读者索取更多资源

The economy-oriented automated hybrid electric vehicles (HEV) have the potential to save energy by optimizing driving behaviors and power distribution. Recent advances in the ecological car following issue of HEV focus on integrating adaptive cruise control (ACC) and energy management system (EMS) for collaborative optimization. However, the current control frameworks have limitations in optimization. To address this, a hierarchical reinforcement learning based ACC-EMS strategy is proposed, which significantly improves training speed and stability in car-following scenarios.
The economy-oriented automated hybrid eclectic vehicles (HEV) provide great potential to save energy by optimizing both driving behaviors and power distribution. Recent advances in the ecological car following issue of HEV focus on fusing adaptive cruise control (ACC) and energy management system (EMS) by collaborative optimization. However, series control frameworks ACC+EMS breaks the internal coupling relation between motion control and energy distribution, leading to the natural limitation of its optimization. On the opposite, integrated ACC-EMS promises energy-saving improvement but brings complex optimization problems with multi-scale objectives and large exploration space. The huge computation load restricts the online application of ACC-EMS. To address these problems, a hierarchical reinforcement learning based ACC-EMS strategy is proposed with a hierarchical policy and non-hierarchical execution. The upper layer learns to plan state of-charge and time-headway trajectories, while the low layer policy learns to achieve the expected goals by outputting control variables executed by the host vehicle. The proposed ACC-EMS strategy were self-learning by interaction in car-following scenario constructed with GPS data on I-880 highway. Comprehensive simulations show the proposed strategy has significantly improved the training speed and stability, compared to the offline global optimum, achieving the energy consumption difference of less than 3% and computational load of less than 600 times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据