4.8 Article

Layer-structured Li1-xNaxNi0.8Co0.15Al0.05O2-δ oxide anode for enhancing ceria electrolyte based solid ceramic fuel cell operating at lower temperatures down to 370 °C

期刊

APPLIED ENERGY
卷 336, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.120788

关键词

Layer-structured oxide anode; Sodium doping; Hydrogen oxidation reaction; Low temperature solid ceramic fuel cell

向作者/读者索取更多资源

A ceria electrolyte-based solid ceramic fuel cell (SCFC) with a layer-structured Li1-xNaxNi0.8Co0.15Al0.05O2 (LNNCA) anode was developed. The use of LNNCA anode significantly improved the power density of the fuel cell at high temperatures, while still maintaining operability at low temperatures. The anchoring effect of doped Na+ and the in-situ grown NaOH played crucial roles in enhancing the catalytic activity, electrical contact, and bonding between the anode and electrolyte, as well as providing transport channels for ions.
A ceria electrolyte-based solid ceramic fuel cell (SCFC) with a layer-structured Li1-xNaxNi0.8Co0.15Al0.05O2 (LNNCA) anode has been developed. The fuel cell with LNNCA anode achieved a maximum power density of 884 mW cm-2 at 550 degrees C, which is about 1.6 times higher than the pristine LNCA anode. Meanwhile, the L0.8N0.2NCA anode presents a good low temperature characteristic, and it could still be operable at 370 degrees C with the power density of 63 mW cm-2. The anchoring effect of doped Na+ plays a vital role in maintaining the layered structure of LNNCA. It decreases Li+/Ni2+ intermixing, and inhibits Ni growing on the surface of LNNCA, which enhance the catalytic activity and electrical contact of the anode with the ceria electrolyte. Furthermore, Na-doping enriches oxygen vacancies, and promotes the dissociation of adsorbed hydrogen on the surface of LNNCA anode, and thus improves the hydrogen oxidation reaction activity. On the other hand, the in-situ grown NaOH, which has a low-melting temperature, derived from LNNCA anode, can effectively strengthen the bonding be-tween the anode and the electrolyte at the interface, as well as penetrate into electrolyte and provide extra transport channels for proton and other ions, thus decrease the polarization resistance and enable the SCFC to performance even at 370 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据