4.8 Article

Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid

期刊

APPLIED ENERGY
卷 335, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.120770

关键词

Day-ahead schedule; Demand response; Load aggregation; Mixed integer linear programming; Security-constrained unit commitment; Reverse osmosis; Membrane water desalination plant; Energy-water nexus

向作者/读者索取更多资源

This paper presents a market-clearing mechanism in a co-optimization model that coordinates the operation of grid-connected reverse osmosis water desalination plants (RO-WDPs) and the operation of renewable-rich power systems. The simulation results show that the proposed coordinated model enhances system efficiency, facilitates renewable energy integration, and smoothes hourly electricity prices.
Integrating renewable energy resources (RES) is a challenge for power system operators due to their fluctuations and unpredictability. At the same time, the water shortage problem and the needs to desalinate more freshwater increase the prominence of sufficient energy resources for sustainable operation. Therefore, this paper presents a market-clearing mechanism in a co-optimization model that coordinates the operation of grid-connected reverse osmosis water desalination plants (RO-WDPs) and the operation of renewable-rich power systems. It is assumed that electric demands can participate in the provision of demand response (DR) to the market via multiple DR options. The DR options related to the general loads are demand shifting, load curtailment, distributed generation, and hybrid energy storage systems (HESS). These HESS includes battery storage and hydrogen storage systems. Pertaining to their special characteristics, a new DR option is proposed as a customized option for RO-WDPs. The market clearing mechanism is assumed to be based on the security-constrained unit commitment (SCUC) and formulated as a stochastic mixed-integer linear programming problem (MILP) to optimally schedule the day-ahead operation of the power system. The presented model is applied on 6-bus and IEEE 24-bus reliability test system (RTS) test power systems with significant penetration of RES to demonstrate its merits. The simulation results show that the system efficiency is enhanced by adding the energy flexibility of RO-WDP without endangering the water demand-supply when using the proposed coordinated model. Hence, the total operation cost is minimized, the RES integration is facilitated, and the hourly electricity prices are smoothened.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据