4.8 Article

Photocatalytic partial oxidation of methane to carbon monoxide and hydrogen over CIGS solar cell

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 325, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.122340

关键词

CIGS; Methane; Oxidation; Syngas; Photocatalysis

向作者/读者索取更多资源

Selective methane photocatalytic oxidation to CO and H2 at ambient conditions is a main challenge in the chemical industry. In this study, conventional Cu (In,Ga)Se2 (CIGS) absorbers used in solar cells were found to be excellent candidates for methane valorization. A thin film of CIGS coated over Mo demonstrated exceptional performance in methane partial oxidation to CO and H2, with a stable CO productivity of 2.4 mmol per gram of CIGS and a selectivity to CO of over 80%.
Methane valorization is one of the main challenges in the modern chemical industry. However, existing processes require high reaction temperatures. The alternative photocatalytic routes for methane valorization at ambient conditions would be highly attractive. Today, photovoltaic (PV) generation of electricity is one of the main sources of renewable energy. PV absorbers could be excellent candidates for photochemical applications. Herein, we report selective methane photocatalytic oxidation at ambient conditions into CO and H2 by conventional Cu (In,Ga)Se2 (CIGS) absorbers used in solar cells. A thin film of CIGS coated over Mo exhibits exceptional performance in methane partial oxidation to CO and H2 with a stable CO productivity of 2.4 mmol per gram of CIGS and a selectivity to CO of over 80%. The reaction proceeds via the facile dissociation of methane into disordered carbon and hydrogen over CIGS surface with subsequent regeneration of the surface by partial oxidation of carbon into CO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据