4.5 Article

Contributions of bone marrow monocytes/macrophages in myeloproliferative neoplasms with JAK2V617F mutation

期刊

ANNALS OF HEMATOLOGY
卷 102, 期 7, 页码 1745-1759

出版社

SPRINGER
DOI: 10.1007/s00277-023-05284-5

关键词

Myeloproliferative neoplasm; Monocytes; macrophages; JAK2(V617F) mutation; RNA-seq; Microenvironment

向作者/读者索取更多资源

The classic BCR-ABL1-negative myeloproliferative neoplasm (MPN) is a highly heterogeneous hematologic tumor that includes three subtypes. This study aimed to clarify the role of bone marrow (BM) monocytes/macrophages in MPN patients with the JAK2(V617F) mutation. The findings provide important resources for future studies and targets for the treatment of MPN patients.
The classic BCR-ABL1-negative myeloproliferative neoplasm (MPN) is a highly heterogeneous hematologic tumor that includes three subtypes, namely polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). Despite having the same JAK2(V617F) mutation, the clinical manifestations of these three subtypes of MPN differ significantly, which suggests that the bone marrow (BM) immune microenvironment may also play an important role. In recent years, several studies have shown that peripheral blood monocytes play an important role in promoting MPN. However, to date, the role of BM monocytes/macrophages in MPN and their transcriptomic alterations remain incompletely understood. The purpose of this study was to clarify the role of BM monocytes/macrophages in MPN patients with the JAK2(V617F) mutation. MPN patients with the JAK2(V617F) mutation were enrolled in this study. We investigated the roles of monocytes/macrophages in the BM of MPN patients, using flow cytometry, monocyte/macrophage enrichment sorting, cytospins and Giemsa-Wright staining, and RNA-seq. Pearson correlation coefficient analysis was also used to detect the correlation between BM monocytes/macrophages and the MPN phenotype. In the present study, the proportion of CD163(+) monocytes/macrophages increased significantly in all three subtypes of MPN. Interestingly, the percentages of CD163(+) monocytes/macrophages are positively correlated with HGB in PV patients and PLT in ET patients. In contrast, the percentages of CD163(+) monocytes/macrophages are negatively correlated with HGB and PLT in PMF patients. It was also found that CD14(+)CD16(+) monocytes/macrophages increased and correlated with MPN clinical phenotypes. RNA-seq analyses demonstrated that the transcriptional expressions of monocytes/macrophages in MPN patients are relatively distinct. Gene expression profiles of BM monocytes/macrophages suggest a specialized function in support of megakaryopoiesis in ET patients. In contrast, BM monocytes/macrophages yielded a heterogeneous status in the support or inhibition of erythropoiesis. Significantly, BM monocytes/macrophages shaped an inflammatory microenvironment, which, in turn, promotes myelofibrosis. Thus, we characterized the roles of increased monocytes/macrophages in the occurrence and progression of MPNs. Our findings of the comprehensive transcriptomic characterization of BM monocytes/macrophages provide important resources to serve as a basis for future studies and future targets for the treatment of MPN patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据