4.8 Article

Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 6, 页码 1938-1946

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b12157

关键词

-

资金

  1. Siemens AG

向作者/读者索取更多资源

Sunlight-driven CO2 reduction is a promising way to close the anthropogenic carbon cycle. Integrating light harvester and electrocatalyst functions into a single photo electrode, which converts solar energy and CO2 directly into reduced carbon species, is under extensive investigation. The immobilization of rhenium-containing CO2 reduction catalysts on the surface of a protected Cu2O-based photocathode allows for the design of a photofunctional unit combining the advantages of molecular catalysts with inorganic photo absorbers. To achieve large current densities, a nanostructured TiO2 scaffold, processed at low temperature, was deposited on the surface of protected Cu2O photocathodes. This led to a 40-fold enhancement of the catalytic photocurrent as compared to planar devices, resulting in the sunlight-driven evolution of CO at large current densities and with high selectivity. Potentiodynamic and spectroelectrochemical measurements point toward a similar mechanism for the catalyst in the bound and unbound form, whereas no significant production of CO was observed from the scaffold in the absence of a molecular catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据