4.8 Article

Influence of Potassium Metal-Support Interactions on Dendrite Growth

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202300943

关键词

Metal Dendrite; Potassium Ion Battery; Potassium Metal Battery; Potassium Sulfur Battery

向作者/读者索取更多资源

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling are used to investigate the influence of potassium (K) metal-support energetics on electrodeposit microstructure. The results show that the choice of support material significantly affects the morphology of the deposited metal. The mesoscale modeling also reveals the importance of substrate-metal interaction on film nucleation and growth.
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据