4.8 Article

Additive-Free Transfer Hydrogenative Direct Asymmetric Reductive Amination Using a Chiral Pyridine-Derived Half-Sandwich Catalyst

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202303709

关键词

Asymmetric Catalysis; Chiral Pyridine; Half-Sandwich Catalyst; Non-Covalent Interaction; Reductive Amination

向作者/读者索取更多资源

In this study, novel chiral half-sandwich iridium catalysts were designed and synthesized, which enabled the preparation of a broad range of α-chiral (hetero)aryl amines with high yield and enantioselectivity. The optimized catalyst and azeotropic mixture of formic acid and triethylamine were used as the hydrogen source under mild and operationally simple conditions. This work introduced an effective chiral catalyst for the simplified synthesis of medicinally important chiral amines, and also provided a rare example of robust enantioselective transition-metal catalysis.
Chiral amines are broadly used compounds in pharmaceutical industry and organic synthesis, and reductive amination reactions have been the most appreciated methods for their syntheses. However, one-step transfer hydrogenative direct asymmetric reductive amination (THDARA) that could expand the scope, simplify the operation and eliminate the use of additives has been challenging. In this work, based on the Xiao's racemic transfer hydrogenative reductive amination in 2010 and our recent work in novel chiral pyridine ligands, chiral half-sandwich iridium catalysts were rationally designed and synthesized. Using the optimized catalyst and azeotropic mixture of formic acid and triethylamine as the hydrogen source, a broad range of & alpha;-chiral (hetero)aryl amines, including various polar functional groups and heterocycles, were prepared in generally high yield and enantioselectivity under mild and operationally simple conditions. Density functional theory (DFT) calculation of the catalytically active Ir-H species and the key hydride transfer step supported the chiral pyridine-induced stereospecific generation of the iridium center, and the enantioselection by taming the highly flexible key transition structure with multiple attractive non-covalent interactions. This work introduced a type of effective chiral catalysts for simplified approach to medicinally important chiral amines, as well as a rare example of robust enantioselective transition-metal catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据