4.8 Article

Regulated Ion/Electron-Conducting Interphase Enables Stable Zinc-Metal Anodes for Aqueous Zinc-Ions Batteries

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202304454

关键词

Conductor Interphase; Dendrite; High Performance; Side Reaction; Zinc-Metal Anode

向作者/读者索取更多资源

An artificial protective layer (APL) is constructed on the Zn-metal anode to improve the interfacial stability and electrochemical performance in high-rate cycling.
Metallic Zinc (Zn) is considered as a remarkably promising anode for aqueous Zn-ion batteries due to its high volumetric capacity and low redox potential. Unfortunately, dendritic growth and severe side reactions destabilizes the electrode/electrolyte interface, and ultimately reduce the electrochemical performance. Here, an artificial protective layer (APL) with a regulated ion and electron-conducting interphase is constructed on the Zn-metal anode to provide excellent interfacial stability in high-rate cycling. The superior ionic and moderate electronic conductivity of the APL derives from the co-embedding of MXene and Zn(CF3SO3)(2) salts into the polyvinyl alcohol hydrogel, which enables a synergistic effect of local current density reduction during plating and ion transport acceleration during stripping for Zn anode. Furthermore, the high Young's modulus of the protective layer and dendrite-free deposition morphology during cycling suppresses hydrogen evolution reactions (2.5 mmol h(-1) cm(-2)) and passivation. As a result, in symmetrical cell tests, the modified battery presents a stable life of over 2000 cycles at ultra-high current density of 20 mA cm(-2). This research presents a new insight into the formation and regulation of stable electrode-electrolyte interface for the Zn-metal anode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据