4.8 Article

Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 16, 页码 5403-5409

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b01811

关键词

-

资金

  1. ITN DYNANO [PITN-GA-2011-289033]

向作者/读者索取更多资源

Aquaporins (AQPs) are biological water channels known for fast water transport (similar to 10(8)-10(9) molecules/s/channel) with ion exclusion. Few synthetic channels have been designed to mimic this high water permeability, and none reject ions at a significant level. Selective water translocation has previously been shown to depend on water-wires spanning the AQP pore that reverse their orientation, combined with correlated channel motions. No quantitative correlation between the dipolar orientation of the water-wires and their effects on water and proton translocation has been reported. Here, we use complementary X-ray structural data, bilayer transport experiments, and molecular dynamics (MD) simulations to gain key insights and quantify transport. We report artificial imidazole-quartet water channels with 2.6 angstrom pores, similar to AQP channels, that encapsulate oriented dipolar water-wires in a confined chiral conduit. These channels are able to transport 106 water molecules/s, which is within 2 orders of magnitude of AQPs' rates, and reject all ions except protons. The proton conductance is high (similar to 5 H+/s/channel) and approximately half that of the M2 proton channel at neutral pH. Chirality is a key feature influencing channel efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据